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1 Statistical Modelling

We wish to collect data from the real-world and draw conclusions. In order
to use this data in a meaningful way we need to build a model that well-
represents the data. If a model is a poor fit, then the observations made will
be poor as well.

1.1 Model building

1.2 Population and samples

A sample is a small subset of a population of interest. It is used to infer things
about the population as a whole. In terms of data-mining, the inferences can
be either descriptive or predictive. The larger the sample, the more likely
that it will reflect the whole population. While random samples from the
population will vary, on average for large samples they will remain fairly
similar.

1.3 Simple Models

1.3.1 Mean, median, mode

The mean is a simple summary of data.

The median is the middle value. If there is an odd number of observations,
it is the middle value. If there is an even number of observations, it is the



mean of the two middle values. It is less sensitive to extreme scores (outliers)
than the mean and makes a better measure for highly skewed data.

The mode is the most frequently occuring score in a distribution and is
greatly subject to sample fluctuation. Many distributions have more than
one mode (multi-modal).

1.3.2 Variance and Standard Deviation

We could calculate the error of an observation by subtracting the mean as
e = x;— . We could then say that the total error is the sum of the observation
errors.

This is not a good way to calculate the error as it depends on the direction
of the error. For example, a combination of negative errors and positive errors
can lead to a 0 error which would be an entirely false observation about the
data. One way to get around this problem is to square each of the errors.
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This is a good model of accuracy of the model but is dependent on the
amount of data collected. We can overcome this by dividing by the number
of observations and finding the average error in the sample. More interesting
is using the error in the sample to estimate the error in the population, so
we divide instead by the number of observations minus one. This is called
the variance.
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It is the average error between the mean and the observations made, but

is in units squared which is inconvenient. The square root of the variance is
known as the standard deviation.

standarddeviation = o =

A small standard deviation indicates that the data is close to the mean.
Conversely, a large standard deviation indicates that the data is far from the
mean. This will indicate if the mean is a good or poor fit to the data.
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Figure 1: Standard Error (not to accurate scale)

1.3.3 Standard Error

The standard error is not the standard deviation. It is best explained with an
example. Take 5 samples from a population with each sample containing 5
observations. In Figure 1, the samples are represented by the ovals and means
of the samples are represented by the lines that pass through the ovals. The
global mean is represented by the thick black line passing through the space.
The standard error is the standard deviation of the difference between the
sample means and the overall mean. A large standard error indicates that
there is a lot of variability, whereas a small standard eror indicates that
samples are more similar to the population.

2 Exploring Data

It is important to understand our dataset and to check properties of our data
so that it meets the criteria necessary for the statistical procedures we wish
to use. The easiest way to see trends in our data is to plot a graph. There
are 6 basic things that should interest us about a dataset.

1. Shape of a dataset will be the main factor in determining which set of
summary statistics best summarises our dataset. It should hence be
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the first characteristic to be noted. Shape is commonly categorised as
symmetric, left-skewed or right-skewed, and as uni-modal, bi-modal or
multi-modal.

. Measure the central tendency, common measures of central tendency

are the mean and median. Less common are the mode (the most fre-
quent value), the mid-range (the value midway between the minimum
and maximum values) and the truncated mean (where a fixed percent-
age of the largest and smallest scores are deleted from the dataset and
the mean of the remaining data is calculated).

. Spread is a measure of variation in the data. Common measures of

spread are variance, standard deviation and the interquartile range.
Less commonly used is the range, as it is strongly skewed by outliers
and not very robust.

. Outliers are data values that lie away from the general cluster of other

data values. Each outlier needs to be examined to determine if it
represents a possible value from the population being studied, in which
case it should be retained, or if it is non-representative (or an error)
in which case it can be excluded. If distribution of the dataset is a
normal distribution, which is the most common case with majority of
data, then 68% of the observations are within p + o and 95% of the
observations are within p =+ 20.

. Clustering implies that the data tends to bunch up around certain

values, eg. annual wages for a factory may cluster around $20 000 for
unskilled factory workers, $35 000 for tradespersons and $50 000 for
management.

. Granularity implies that only certain discrete values are allowed, eg. a

commodities future may only be traded in multiples of 100. Discrete
data has some granularity as only certain values are possible. Contin-
uous data can show granularity if the data is rounded.

Correlation

Correlation is the linear relationship between two or more variables. A pos-
itive correlation means that as one variable increases, the other increases as
well. A negative correlation means that as one variable increases, the other
decreases.



3.1 Covariance

Variance is the average amount data varies from the mean. If there is a
correlation between two variables, then as one deviates from the mean, we
expect the other to have similar deviations.
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This is the average sum of the combined differences. It is dependent on the
scale of measurement and changing the units effect the covariance. It needs to
be standardised. In order to standardise measurements, we normally subtract
the mean and divide by the standard deviation. In the case of covariance, the
mean is already subtracted, so we simply divide by the standard deviation.
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This is the Pearson product moment correlation coefficient and lies be-
tween the values of -1 and 1. A value of 1 indicates perfect correlation which
means that as one variable increases, the other increases by a proportional
amount.

In interpreting correlation, we can conclude that with a strong correlation
that as one variable increases, the other increases as well. We cannot, how-
ever, say that one variable increasing caused the other to increase. This is
because in any bivariate correlation, there may be other measured or unmea-
sured variables effecting the results. Furthermore, the correlation coefficient
does not say anything about what variable caused another to change.

The correlation coefficient can be squared producing the measure of the
amount of variability in one variable that is explained by the other. If, say,
two variables had a correlation of -0.431, then the r? value will be 0.1858,
so we can say that one variable accounts for 18.58% of the variability in the
other variable. Still this cannot be used to infer causal effects.



